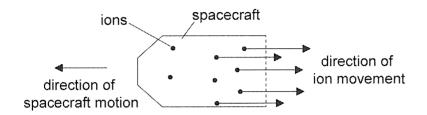


Physics Standard level Paper 2

	Car	idida	te se	ssion	num	iber	
L	 		<u></u>				

1 hour 15 minutes

Instructions to candidates


- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Answers must be written within the answer boxes provided.
- · A calculator is required for this paper.
- A clean copy of the physics data booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Answer all questions. Answers must be written within the answer boxes provided.

1. Ion-thrust engines can power spacecraft. In this type of engine, ions are created in a chamber and expelled from the spacecraft. The spacecraft is in outer space when the propulsion system is turned on. The spacecraft starts from rest.

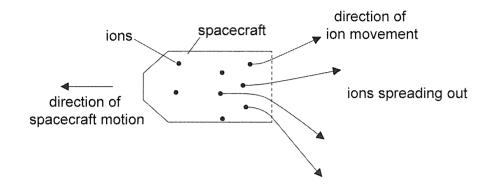
The mass of ions ejected each second is $6.6\times10^{-6}\,\mathrm{kg}$ and the speed of each ion is $5.2\times10^4\,\mathrm{m\,s^{-1}}$. The initial total mass of the spacecraft and its fuel is 740 kg. Assume that the ions travel away from the spacecraft parallel to its direction of motion.

(8	a)	L	Je	ete	err	nı	ne	∋ T	ne	9 1	nı	TIE	31	a	CC	e	lei	ra	TIC	on	С	T	(n	е	sp	a	ce	cr	ат	τ.												[2.
		 																		A												 	 	 		 	 	 	 		 ristmaterio	***************************************
•	•		•		•		•		•					•	•		•		٠	•		•		•		•		•		•		 	 ٠	 • •	٠	 •	 ٠	 •	 			
•	•	 	•		•		•		•		•			٠	•				٠	•		•		•		•		٠		•		 	 •	 	٠	 •	 •	 •	 	•		
•			•		٠		•		•			٠.		•			•		•	•		•		•		•		•		•		 	 ٠	 	•	 •		 •	 			
	•		٠		٠		٠				•			٠			•		•	•		٠		•				•	٠.	•	. ,	 		 		 •	 •	 •	 	•		
									•		•						•		•									٠		•		 		 	٠				 	•		

(b) An initial mass of 60 kg of fuel is in the spacecraft for a journey to a planet. Half of the fuel will be required to slow down the spacecraft before arrival at the destination planet.

(i) Estimate the maximum speed of the spacecraft.	[2]
.,	
(ii) Outline why scientists sometimes use estimates in making calculations.	[1]

(This question continues on the following page)



Turn over

(Question 1 continued)

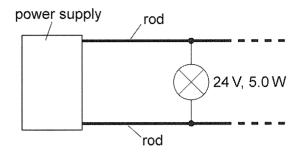
(c) In practice, the ions leave the spacecraft at a range of angles as shown.

	(i) Outline why the ions are likely to spread out.	[2]
		•
		•
	(ii) Explain what effect this spreading has on the acceleration of the spacecraft.	ro:
	(ii) Explain what cheet this spreading has on the acceleration of the spacecraft.	[2]
	(ii) Explain what check this spreading has on the acceleration of the spacecraft.	[2]
	(ii) Explain what check this spreading has on the acceleration of the spacecraft.	
	(ii) Explain what check this spreading has on the acceleration of the spacecraft.	
	(ii) Explain what check this spreading has on the acceleration of the spacecraft.	[2]
**********	(ii) Explain what check this spreading has on the acceleration of the spacecraft.	

(Question 1 continued)

(d) On arrival at the planet, the spacecraft goes into orbit as it comes into the gravitational field of the planet.

(i)	Outline what is meant by the gravitational field strength at a point.	[2]
(ii)	Newton's law of gravitation applies to point masses. Suggest why the law can be applied to a satellite orbiting a spherical planet of uniform density.	[1]



Turn over

[3]

[2]

2. A lighting system consists of two long metal rods with a potential difference maintained between them. Identical lamps can be connected between the rods as required.

The following data are available for the lamps when at their working temperature.

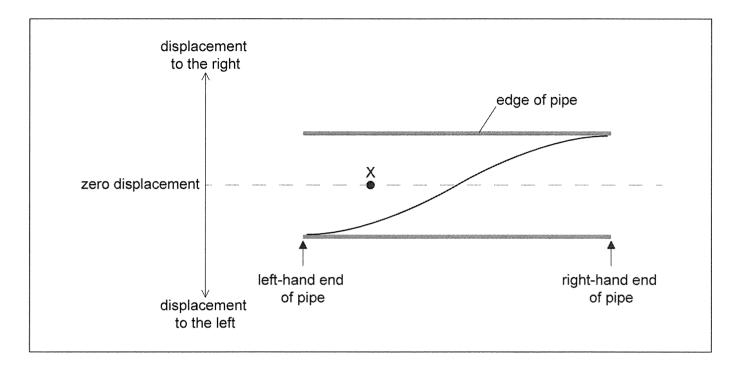
(a)	Each rod is to have	a resistance no	greater	than 0.10 Ω	. Calculate,	in m, the	minimum
	radius of each rod.	Give your answ	er to an	appropriate	number of s	significant	figures.

(b)	Calculate the maximum number of lamps that can be connected between the rods.
	Neglect the resistance of the rods.

 , . , . , . , . , . , . , . , . , ,	, ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(Question 2 continued)

	(c)	One advantage of this system is that if one lamp fails then the other lamps in the circuit remain lit. Outline one other electrical advantage of this system compared to one in which the lamps are connected in series.	[1]
3.	to re	icken's egg of mass 58 g is dropped onto grass from a height of 1.1 m. The egg comes st in a time of 55 ms. Assume that air resistance is negligible and that the egg does counce or break. Determine the magnitude of the average decelerating force that the ground exerts on the egg.	[4]
	(b)	Explain why the egg is likely to break when dropped onto concrete from the same height.	[2]
The state of the s			
			-



Turn over

[2]

4. A pipe is open at both ends. A first-harmonic standing wave is set up in the pipe. The diagram shows the variation of displacement of air molecules in the pipe with distance along the pipe at time t = 0. The frequency of the first harmonic is f.

(a)	An air molecule is situated at point X in the pipe at $t = 0$. Describe the motion of this
	air molecule during one complete cycle of the standing wave beginning from $t = 0$.

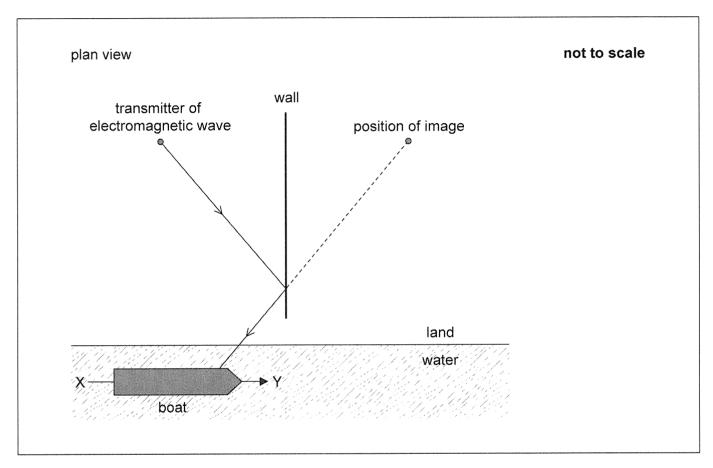
(Question 4 continued)

(b) The speed of sound c for longitudinal waves in air is given by

$$C = \sqrt{\frac{K}{\rho}}$$

where ρ is the density of the air and K is a constant.

A student measures f to be 120 Hz when the length of the pipe is 1.4 m. The density	
of the air in the pipe is 1.3 kg m ⁻³ . Determine, in kg m ⁻¹ s ⁻² , the value of K for air.	[3]



Turn over

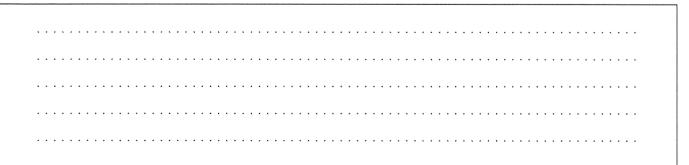
(Question 4 continued)

(c) A transmitter of electromagnetic waves is next to a long straight vertical wall that acts as a plane mirror to the waves. An observer on a boat detects the waves both directly and as an image from the other side of the wall. The diagram shows one ray from the transmitter reflected at the wall and the position of the image.

(i)	Demonstrate, using a second ray, that the image appears to come from the position indicated.	[1]
(ii)	Outline why the observer detects a series of increases and decreases in the intensity of the received signal as the boat moves along the line XY.	[2]

16ED16

5. The diagram shows the position of the principal lines in the visible spectrum of atomic hydrogen and some of the corresponding energy levels of the hydrogen atom.


energy / 10 ⁻¹⁹ J 0.605 	
	
	488 nm 435 nm

(a)	Determine the energy of a photon of blue light emitted in the hydrogen spectrum.	[3]

(b)	Identify, with an arrow labelled B on the diagram, the transition in the hydrogen	
	spectrum that gives rise to the photon with the energy in (a).	[1]

(c)	Explain	vour	answer t	o (b	١.
(~)		,	C. 10 11 01 1	~ (~	,,

[2]

6.	The ratio $\frac{\text{distance of Mars from the Sun}}{\text{distance of Earth from the Sun}} = 1.5$.					
	(a)	Show that the intensity of solar radiation at the orbit of Mars is about 600 W m ⁻² .	[2]			
		Determine, in K, the mean surface temperature of Mars. Assume that Mars acts as a black body.	[2]			
	. ,	The atmosphere of Mars is composed mainly of carbon dioxide and has a pressure less than 1% of that on the Earth. Outline why the greenhouse effect is not significant on Mars.	[2]			

16EP12

The following data are available.	
Mass of 1.0 mol of oxygen $= 32 \text{g}$ Specific latent heat of vaporization of oxygen $= 2.1 \times 10^5 \text{J kg}^{-1}$	
(a) Distinguish between the internal energy of the oxygen at the boiling point when it is in its liquid phase and when it is in its gas phase.	[2
	[2
	[2
	[2
	[2
	[2
	[2
(ii) Calculate the volume of the oxygen produced in one second when it is allowed to expand to a pressure of 0.11 MPa and to reach a temperature of 260 K.	
(ii) Calculate the volume of the oxygen produced in one second when it is allowed	[2
(ii) Calculate the volume of the oxygen produced in one second when it is allowed	
(ii) Calculate the volume of the oxygen produced in one second when it is allowed	

(Question 7 continued)

(0)	oxygen.	[1]
		annany tambatah

16EP1

Please do not write on this page.

Answers written on this page will not be marked.

16ED15

Please do not write on this page.

Answers written on this page will not be marked.

