

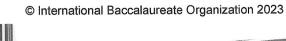
Physics Standard level Paper 3

2 May 2023

Zone A afternoon | Zone B morning | Zone C morning

	Car	ndida	te se	ssion	numl	oer	
Т			2011			27 P. S	
\perp							

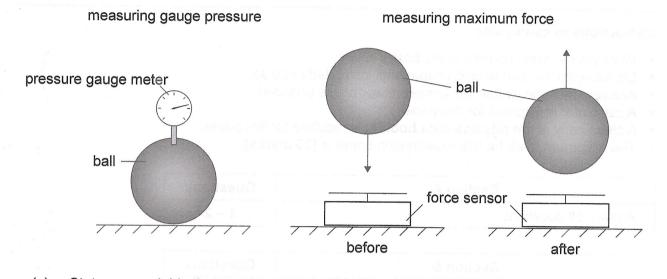
1 hour


Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answers must be written within the answer boxes provided.
- · A calculator is required for this paper.
- A clean copy of the physics data booklet is required for this paper.
- The maximum mark for this examination paper is [35 marks].

Section A	Questions
Answer all questions.	1 – 2

Section B	Questions
Answer all of the questions from one of the options.	
Option A — Relativity	3 – 5
Option B — Engineering physics	6 – 7
Option C — Imaging	8 – 10
Option D — Astrophysics	11 – 13


2223-6518

Section A

Answer all questions. Answers must be written within the answer boxes provided.

1. A student investigates the relationship between the pressure in a ball and the maximum force that the ball produces when it rebounds.

A pressure gauge measures a difference Δp between the atmospheric pressure and the pressure in the ball. A force sensor measures the maximum force $F_{\rm max}$ exerted on it by the ball during the rebound.

	(a) Otate	one variable triat fleeds to be conti	oiled during the investigation.	[1
		6 - E	- Virvitale i I A neth	
			and ying gathering 1.5 - 1 months	
			pag- a J ne a	
L	And the second s			

(This question continues on the following page)

(Question 1 continued)

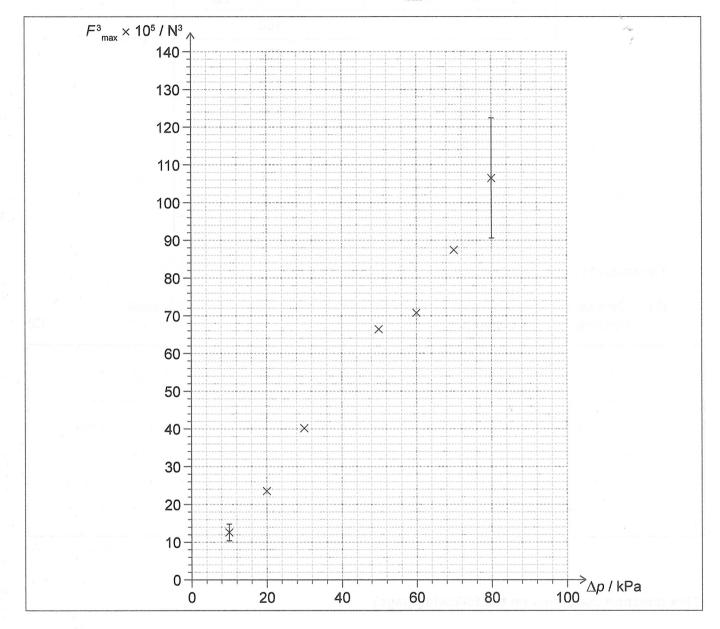
The student collects the following data.

Gauge pressure ∆ <i>p l</i> kPa	Maximum force F _{max} / N
10	108
20	133
30	158
40	170
50	188
60	192
70	206
80	220

The student initially hypothesizes that Δp is proportional to F_{\max} .

h	ot												ıa	เล	3	ρc	oir	זר	S	rr	on	n 1	ne	9 1	a	DI:	e,	tr	าล	IT I	เท	е	S	ίu	ае	en	[5	S 1	n	TI	aı					
	 	******	-			 -				 					*******	-		*****			-	********								-			-				-								 	-
 						 			•																						٠														 	ő
					•			•		•	•		•	•	•	•		•	•	٠.	•	•	•	•		•	٠.	•			•	•		Ċ		2	•		•	•	٠,	•	•			
 						 		•					•																																 	83
 		٠.	•		•	 	•	•		 •	•	•	•	٠	•			•				•	٠			٠					٠			•		•	•								 	
 						 																																						٠.	 	

(This question continues on the following page)



Turn over

(Question 1 continued)

The student now proposes that $F_{\text{max}}^3 = k\Delta p$.

The student plots a graph of the variation of Δp with $F_{\rm max}^3$.

(c) (i) State the unit for k.

[1]

(ii) Plot on the graph the position of the missing point for the Δp value of 40 kPa. [1]

(This question continues on the following page)

(Question 1 continued)

The percentage uncertainty in $F_{\rm max}$ is $\pm 5\,\%$. The error bars for $F_{\rm max}^3$ at $\Delta p=10\,{\rm kPa}$ and $\Delta p=80\,{\rm kPa}$ are shown.

Calculate the absolute uncertainty in $F_{\rm max}^3$ for $\Delta p=30\,{\rm kPa}$. State an appropriate number of significant figures for your answer. (d)

[3]

				renaerodinalja s		
(ii)	Plot the abs	solute uncertainty	determined in n	art (d)(i) as an erro	r bar on the graph	[1

- (iii) Explain why the new hypothesis is supported.

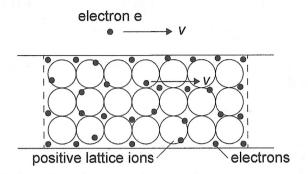
[1]

		 	•	•			•			,					•		•	•	•	•	•	٠	٠	•	٠										•		•	•	•	•	٠	•	•	٠		
																																		3												
		 									 														٠																					

Turn over

2.	The o	Ident conducts an experiment to determine the specific heat capacity of a metal cube. Cube is heated in a beaker of boiling water to a temperature of 100 °C and then quickly after into an insulated vessel of negligible thermal capacity. The vessel contains water 0 °C and of known specific heat capacity.	
	(a)	State one other measurement that the student will need to make.	[1]

	(b)	Suggest one modification that the student can make to reduce the fractional uncertainty for the change in temperature of the metal cube.	[1]
2			
	A.S.	g sati no natina na ka (iliju) way ni beransisto yanapetin, dipanga an ion, ili ng	
	(c)	Some water from the beaker is accidentally transferred with the cube.	
		Discuss how this will affect the value of the calculated specific heat capacity of the cube.	[2]



Section B

Answer **all** of the questions from **one** of the options. Answers must be written within the answer boxes provided.

Option A — Relativity

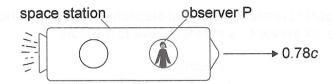
3. A wire carries an electric current. An external electron e moves with the drift velocity *v* of the electrons in the wire. Observer O is at rest relative to the wire.

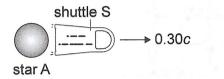
(a) State what is meant by a frame of reference. [1]

(b) State and explain the nature of the electromagnetic force acting on electron e in the frame of reference of

(i) observer O. [2]

												•							 •				•	 •				 					 *		•	
٠.					ŕ	•		•	•	٠.	•	•		·				•			e j	•		 ÷	ċ	•	i	•	÷	•	·	•			•	


(ii) electron e. [2]



(Option A continued)

4. Star A and star B are separated by a fixed distance of 4.8 light years as measured in the reference frame in which they are stationary. An observer P at rest in a space station moves to the right with speed 0.78c relative to the stars. A shuttle S travels from star A to star B at a speed of 0.30c relative to the stars.

star E

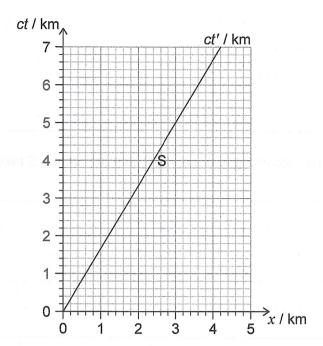
(a) State the value of the maximum distance between the stars that can be measured in any reference frame.

[1]

- (b) Write down the speed of shuttle S relative to observer P using Galilean relativity. [1]
 - (c) Calculate the distance between star A and star B relative to observer P. [2]

	ate consequence in an advantage account in the series of the consequence of the consequen					
• • • • •						
	Calculate to star B.	the time, a	ccording to obse	erver P, that tl	ne shuttle S tak	es to travel from star
		the time, a	ccording to obse	erver P, that th	ne shuttle S tak	es to travel from star
		the time, a	ccording to obse	erver P, that th	ne shuttle S tak	es to travel from star
		the time, a	ccording to obse	erver P, that th	ne shuttle S tak	es to travel from star
		the time, a	ccording to obse	erver P, that th	ne shuttle S tak	es to travel from star

(f) Identify and explain the reference frame in which the proper time for shuttle S to journey from star A to star B can be measured. [2]



[2]

(Option A continued)

5. The spacetime diagram shows the Earth frame with the worldline of a spaceship S moving away from Earth. ct' = 0 when ct = 0.

(a) Determine the speed of the spaceship relative to Earth. [1]

A flash of light sent by an Earth observer at $ct = 2.0 \,\mathrm{km}$ is directed towards the spaceship.

(b) Estimate, using the spacetime diagram, the time in seconds when the flash of light reaches the spaceship according to the Earth observer.

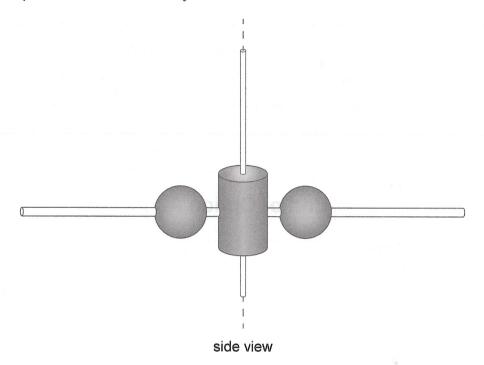
A TOUR STATE OF THE PROPERTY AND A TOUR STATE OF THE PROPERTY AND

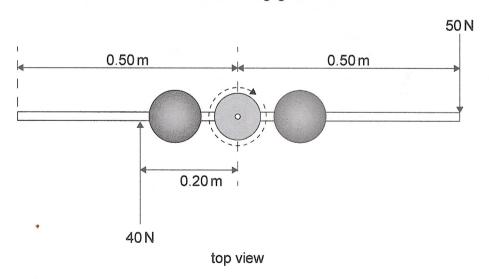
.....

(Option A, question 5 continued)

(c)	Determine the time coordinate <i>ct'</i> when the flash of light reaches the spaceship, according to an observer at rest in the spaceship. [2]	<u>']</u>
	tud lagur par ken kegi tort (k. pisas beur rek ferit nap arti erasik negat paan erasim sahalas sahawa pati	
		-

End of Option A



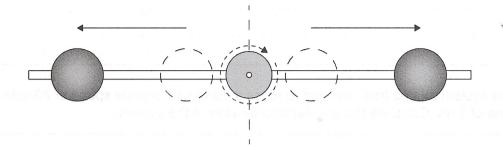

Option B — Engineering physics

6. A student models a rotating dancer using a system that consists of a vertical cylinder, a horizontal rod and two spheres.

The cylinder rotates from rest about the central vertical axis. A rod passes through the cylinder with a sphere on each side of the cylinder. Each sphere can move along the rod. Initially the spheres are close to the cylinder.

A horizontal force of 50 N is applied perpendicular to the rod at a distance of 0.50 m from the central axis. Another horizontal force of 40 N is applied in the opposite direction at a distance of 0.20 m from the central axis. Air resistance is negligible.

oti	on B, question 6 continued)
	(a) Show that the net torque on the system about the central axis is approximately 30 Nm.
	(b) The system rotates from rest and reaches a maximum angular speed of 20 rad s ⁻¹ in a time of 5.0 s. Calculate the angular acceleration of the system.
	(c) Determine the moment of inertia of the system about the central axis.



Turn over

[2]

(Option B, question 6 continued)

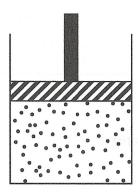
(d) When the system has reached its maximum angular speed, the two forces are removed. The spheres now move outward, away from the central axis.

(i)	Outline why the angular speed ω decreases when the spheres move outward.	[2]

(ii)	Show that the rotational kinetic energy is $\frac{-L\omega}{2}$ where L is the angular momentum of the system.	[1]
	74	
	degrapher and the control of the con	

(iii)	When the spheres move outward, the angular speed decreases from 20 rad s ⁻¹
	to 12 rad s ⁻¹ . Calculate the percentage change in rotational kinetic energy that
	occurs when the spheres move outward.

(e) Outline one reason why this model of a dancer is unrealistic.	[1
······	

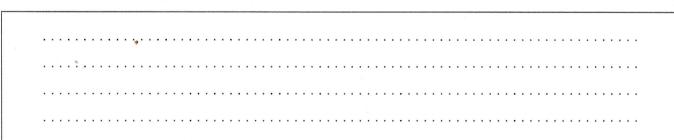


Turn over

[2]

(Option B continued)

7. A frictionless piston traps a fixed mass of an ideal gas. The gas undergoes three thermodynamic processes in a cycle.



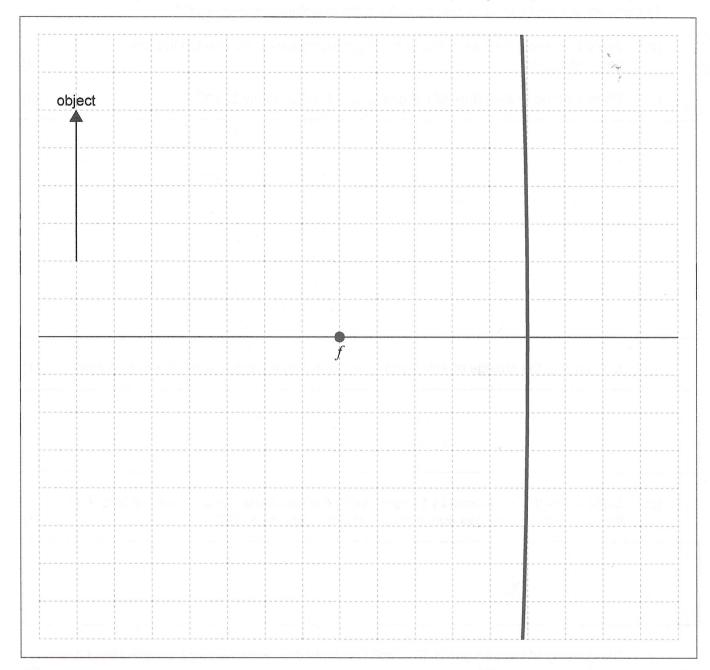
The initial conditions of the gas at A are:

Process AB is an isothermal change, as shown on the pressure volume (pV) diagram, in which the gas expands to three times its initial volume.

|--|

(Option B, question 7 continued) The gas now undergoes adiabatic compression BC until it returns to the initial volume. To complete the cycle, the gas returns to A via the isovolumetric process CA. Sketch, on the pV diagram, the remaining two processes BC and CA that the (b) [2] gas undergoes. [2] Show that the temperature of the gas at C is approximately 350 °C. (c) Explain why the change of entropy for the gas during the process BC is equal to zero. [1] (d) Explain why the work done by the gas during the isothermal expansion AB is less than (e) the work done on the gas during the adiabatic compression BC. [1] The quantity of trapped gas is 53.2 mol. Calculate the thermal energy removed from the (f) [2] gas during process CA.

End of Option B



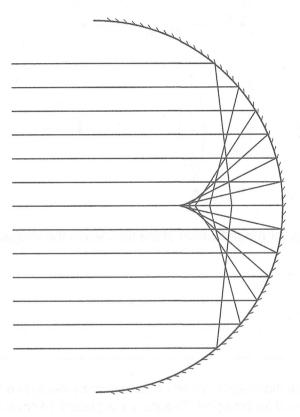
Turn over

Option C — Imaging

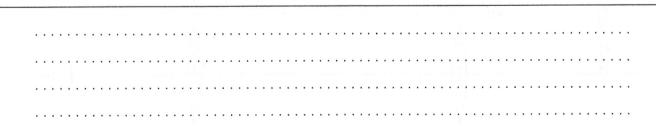
8. An object is placed in front of a concave mirror with the focal point f as shown.

(a) Construct a ray diagram to locate the position of the image produced.

[2]



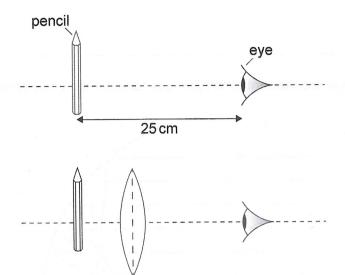
(Option C, question 8 continued)


((b))	-	De	es	cr	ib	e i	th	e 1	e					ne		ag	е	рі	ro	dι	IC	ec	d.														[1]
 			-											-	-				1;												4					VC.		65	
				•								•							•				•	•			•							 •	 •				
																														Alico Action							7		

(c) Parallel light rays are incident on a spherical concave mirror as shown.

State the problem illustrated by the diagram and how it is corrected in reflecting telescopes.

[2]

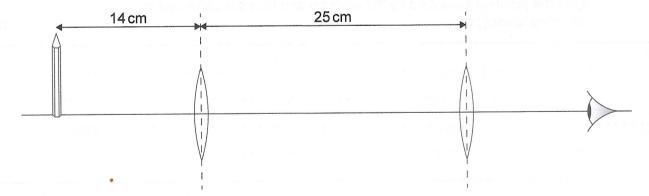


Turn over

[1]

(Option C continued)

9. The eye of an observer has a near point of 25 cm. A pencil is placed at the near point. A convex lens of focal length 8 cm is then placed between the pencil and the observer as shown. The pencil is positioned at the focal point of the lens.



(a) Determine the angular magnification of the lens when the image of the pencil is viewed at infinity.

8 cm

......

(b) A student increases the magnification of the pencil by using two 8 cm focal length convex lenses placed 25 cm apart. The pencil is placed 14 cm from one of the lenses.

(Option C, question 9 continued)

		(i)	Show that the magnitude of the magnification of the pencil produced by the lens closest to the pencil is approximately 1.3.	[2]
		(ii)	Calculate the total magnification observed by the student using the two lenses as shown.	[2]
	(c)	norn	two 8 cm focal length convex lenses are now used to construct a telescope in nal adjustment. The diameter of the lenses is much greater than the diameter of bupil of the eye. State, compared with the naked eye,	
		(i)	one advantage of using this telescope for astronomical observations.	[1]
	••••			
L				F41
		(ii)	one disadvantage of using this telescope for astronomical observations.	[1]

(Option C continues on page 23)

Turn over

Please do not write on this page.

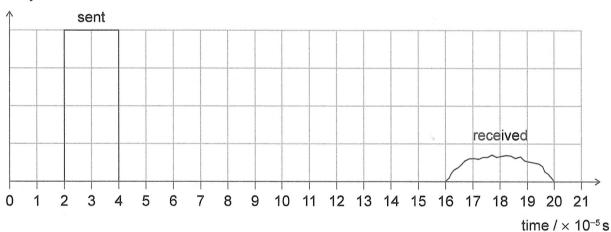
Answers written on this page will not be marked.

(Option C, question 9 continued)

	(d)		Des arra						ati	or	nal	CC	olla	abo	ora	atio			ın i																		[2]
		u d	ł gy	91.4	9- ly	ij.		J.	00							10				ju:	ì,		1 1			or it.							27	T		31	
[2]						 	• •	1.1		٠.		٠.				•	• •	٠,	٠.	•	- 1	•	• •	٠.	٠.	•		•	: .	•	•		• •) 3	i.		
			· · ·		٠.	 			٠.										٠.													 			.7.		
						 																			٠.		٠.		٠.			 					
						 					٠.																					 					

Turn over

(Option C continued)


- 10. Signals in an optic fibre require amplification when intensity levels in the fibre have fallen to 1.5% of the original signal. A light signal of initial intensity I_0 is sent down the optic fibre.
 - (a) The fibre has an attenuation per unit length of 0.30 dB km⁻¹. Deduce that the length of the fibre is approximately 60 km before the signal requires amplification.

[2]

									•	•															,																			
								•	٠	•																									•	٠								
												•		•													•	•			·		•	•								٠		
										•																						,												

A signal is sent down a 27 km step-index fibre and received according to the intensity–time graph below.

intensity

(b) Calculate the refractive index of the fibre.

[2]

-			-																																 	
		•															•	 •					٠						 							
								 																					 		. ,					
						,		 																												
								 																										,		

(Option C, question 10 continued)

	Alptica is your partition of the second

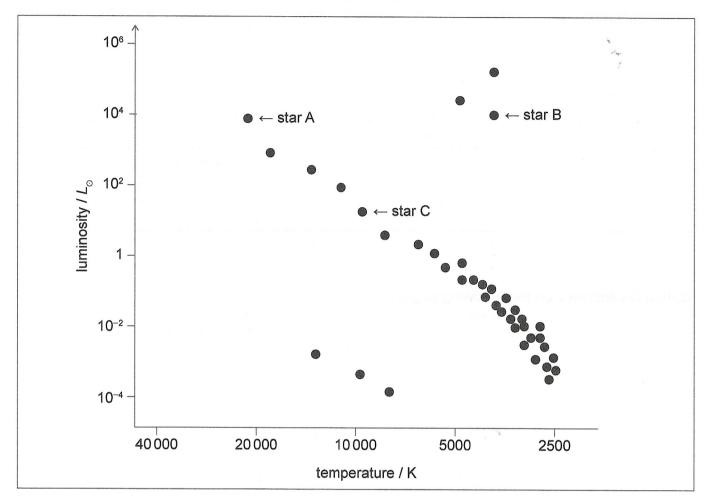
End of Option C

Turn over

(ii) Astrophysicists they can make	meant by a nebula. shave deduced the nature these deductions. e in our own galaxy. The	re of this nebula from Earth. y appear to move with respense a six-month period. The follow	Outline how [1]
(ii) Outline what is (ii) Astrophysicists they can make	meant by a nebula. shave deduced the nature these deductions. e in our own galaxy. The	re of this nebula from Earth.	Outline how [1
(ii) Astrophysicists they can make	s have deduced the natue these deductions.	re of this nebula from Earth.	Outline how [1
(ii) Astrophysicists they can make	s have deduced the nature these deductions.	re of this nebula from Earth.	Outline how [1
they can make	these deductions.	y appear to move with respe	[1
they can make	these deductions.	y appear to move with respe	[1
distant stars when v			
o p. o			
	Parallax angle	Apparent brightness	
Star X	0.019 arc-second	$8.4 \times 10^{-9} \text{Wm}^2$	
Star Y	0.038 arc-second	$3.1 \times 10^{-9} \text{Wm}^2$	
(i) Deduce which	star will appear to move	more.	[2
	the distance to star V		[1
	Deduce which	Deduce which star will appear to move	Deduce which star will appear to move more.

(Option D, question 11 continued)

		(i	ii))		D	е	te	r	m	ìi	ne	Э	tŀ	16)	a	ti	0	11	ur	n	ir	וכ) 5	Sit	ty	' (of of	9	sta	ar ar	- \	X Y																				
					 								•		•	•				•		٠	•	•	•		•	•	•		•							 •	•	٠		•	•				•	٠	•	•	٠	,	·	
					 										•	• 70									٠																												3	
					 																																	 ٠.						•										



Turn over

(Option D continued)

12. Three stars A, B and C are labelled on the Hertzsprung–Russell (HR) diagram. L_{\odot} is the Luminosity of the sun.

(a	1)	S	ta	ite	ŧ	he	e r	na	aiı	1	el	er	n	er	nt	th	na	t i	s	uı	nc	le	rg	oi	ing	9	ทเ	ıc	le	ar	fı	us	sic	n	in	S	ta	r	C.										1]
		 			-									*******																									-	-	 		 			 	 -	-	
											٠			٠	٠				٠.	٠			٠		٠																			٠.					
		 	-																														-				-					-	 						

(b) Explain why star B has a greater surface area than star A. [2]

(c)	White dwarfs with similar volumes to each other are shown on the HR diagram.		
	Construct a line, on the HR diagram, to show the possible positions of other white dwarf stars with similar volumes to those marked on the HR diagram.	(8)	[2]
(d)	Some stars on the HR diagram are likely to evolve into neutron stars.	No.	
	Outline why the radius of a neutron star reaches a stable value.		[2]

 est ci recesso est le eșe	 	

(Option D continues on the following page)

Cinolita O To brillian

Turn over

lob	uon D	continued)	
13.	Gala	xy D has a redshift $z = 0.13$.	
	(a)	Calculate, in Mpc, the distance to D using a Hubble constant value of 73 km s ⁻¹ Mpc ⁻¹ .	[2
		•	
		(a) for the first and a such that is the content of the surface of	
	• • •		
	(b)	A Hubble constant value of $73\mathrm{kms^{-1}Mpc^{-1}}$ gives an age of the universe to be 13.4×10^9 years when assuming a constant rate of expansion has occurred.	
L		(i) Determine in years, the age of the universe when the light detected on Earth now was originally emitted from D.	[3]
		······································	

		(ii) Evidence based on observations of type I a supernovae affects the result in (b)(i). State the relevant conclusion from these observations.	[1]

End of Option D

