

Physics Standard level Paper 2

Friday	17	May	2019	(afternoon)	

	Candidate session number	
1 hour 15 minutes		2

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.
- · Answers must be written within the answer boxes provided.
- · A calculator is required for this paper.
- · A clean copy of the physics data booklet is required for this paper.
- · The maximum mark for this examination paper is [50 marks].

Answer all questions. Answers must be written within the answer boxes provided.

- 1. A student strikes a tennis ball that is initially at rest so that it leaves the racquet at a speed of 64 m s⁻¹. The ball has a mass of 0.058 kg and the contact between the ball and the racquet lasts for 25 ms.
 - (a) Calculate the

		(i)		8	av.	er	ąç	је	fc	ro	Э	e	Χe	ert	e	i t	οу	th	ne	; r	ac	p	ue	et (or	t	he	e k	a	II.															[2	2]
	10.1												- 3				19.00	- 10 - 3	-					Value			1/00			-	-				-		 	 	-		 				 		٦
•		• •		1 18		1.00							٠.	٠		61 61			(*)		6 •3		•				*		•	٠.			1 0		•					•	 0.01		٠				
				4.1			٠.	c *	٠.						5-6-				9 3		121 - 7	z v			1910					٠.	9 48	u s			• .		 ř.	٠	٠.	•	 •		•	٠.			
•	• • •				is 19	3 - 16		1 11		. 14		3 48		1 16	5 B				S 8		•		1 1 1						,	٠,		٠.			•		 •	 •		8	 •						
٠		٠.		. •		141		§ 2	٠,	-	• •	1 5	• •	ě					٠	٠,	•		ě				٠			٠.	•		•	• •	•	5 5					 •	5.5					

(ii) average power delivered to the ball during the impact. [2]

(b) The student strikes the tennis ball at point P. The tennis ball is initially directed at an angle of 7.00° to the horizontal.

The following data are available.

Height of P = $2.80 \,\mathrm{m}$ Distance of student from net = $11.9 \,\mathrm{m}$ Height of net = $0.910 \,\mathrm{m}$ Initial speed of tennis ball = $64 \,\mathrm{m \, s^{-1}}$

(This question continues on the following page)

(Question 1 continued)

(i)	Calculate the time it takes the tennis ball to reach the net.	[2]

(ii)	Show that the tennis ball passes over the net.	[3]
N F P (N) A) A) A F		
(iii)	Determine the speed of the tennis ball as it strikes the ground.	[2]
	• • • • • • • • • • • • • • • • • • • •	

(This question continues on the following page)

(Question 1 continued)

(c) The student models the bounce of the tennis ball to predict the angle θ at which the ball leaves a surface of clay and a surface of grass.

The model assumes

- · during contact with the surface the ball slides.
- · the sliding time is the same for both surfaces.
- · the sliding frictional force is greater for clay than grass.
- · the normal reaction force is the same for both surfaces.

			0	r	fc	r	a	9	gr	·a	S	S	S	u	rf	а	Ce	e. 											 					150													 			****						
					3 •3	-				•			•	•								7 . 1	•	 29 2	 		•	•	 ٠		•	•	•												•			•		•		•	•		•	
	٠				s .	e:		٠	•	-	٠	•	000	•	•	•		6 5		•	·	10 1	•			3	•		 ٠		•	100	٠	•		•			z •	•	 	٠					 •	•			U.	(* 6)	• •		٠	
6.6	٠	٠	•		•	٠	٠		٠		•	•	٠			• 11			1 5	ė	•	u. o					•						٠	•		,					 •	٠			٠	• 0		ě	x 5		٠		a) a		ï	
• •	*	ø		•	a •	٠	ė		•	•		•	•	•	•	• 0		•			٠	(* E	•	 	 •	٠	•	•	 ٠	•	• •		•				٠				 •	٠			•						8				¥	
	•		• •		S •0	٠	٠		٠	•	٠	•	•		•	• @			j k i	•	٠	() - 6	•		 •	•	•		 ٠	•		130	•8	20.3		•	•		a •	٠	 ٠	•			•				٠.		•	•	•	•	•	
• •	٠	٠				٠	٠	٠	•	•	•	•1			•	• 0		e •		٠	×	* •	•		 •	×	•		 *	•				•	٠.	٠	٠	٠.	•	•	 ٠	٠	• •	٠	ř	• •	 •			•	•				•	

Predict for the student's model, without calculation, whether θ is greater for a clay surface

4 .	tem	perature 320 K. Assume that this sample of helium gas behaves as an ideal gas.	
	(a)	The molar mass of helium is $4.0\mathrm{gmol^{-1}}$. Show that the mass of a helium atom is $6.6\times10^{-27}\mathrm{kg}$.	[1]
0	* * * *		
	(b)	Estimate the average speed of the helium atoms in the container.	[2]
	(c)	Show that the number of helium atoms in the container is about 4×10^{20} .	[2]
je.			3-10
	1 - 0 -0 - 1		
	(d)	A helium atom has a volume of $4.9 \times 10^{-31} \text{m}^3$.	
		total volume of helium atoms	*******
	931	(i) Estimate the ratio volume of helium gas	[1]
	4		
		(ii) Explain, using your answer to (d)(i) and with reference to the kinetic model, why this sample of helium can be assumed to be an ideal gas.	[2]

		T. (1 1 1 1 1 1 1 1 1	

3. The diagram shows the direction of a sound wave travelling in a metal sheet.

diagram not to scale

(a) Particle P in the metal sheet performs simple harmonic oscillations. When the displacement of P is $3.2\,\mu m$ the magnitude of its acceleration is $7.9\,m\,s^{-2}$. Calculate the magnitude of the acceleration of P when its displacement is $2.3\,\mu m$.

(b) The wave is incident at point Q on the metal—air boundary. The wave makes an angle of 54° with the normal at Q. The speed of sound in the metal is 6010 m s⁻¹ and the speed of sound in air is 340 m s⁻¹. Calculate the angle between the normal at Q and the direction of the wave in air.

1.3	ŧ
. /	

[2]

(This question continues on the following page)

(Question 3 continued)

(c) The frequency of the sound wave in the metal is 250 Hz.

	(i)		5	Sta	ate	e ·	th	е	fr	е	qı	ue	er	10	y	C	of	ti	he	9	W	a	V	е	ir	1 8	ai	r.																								[1
	• •	•					. (1.0)						•						0.40					• ()•	•			•							. ,			•	 •							.1						12		
			9 20		•			×		. 12	•	•	•					•	•	21	٠	ų i	•		•		٠				-	٠	•			1 1	•	•	 •	٠	• •	•	•	100	•	•		7	•		 •	•		
 																														 	 			 													 			_				

(ii) Determine the wavelength of the wave in air. [1]

(d) The sound wave in air in (c) enters a pipe that is open at both ends. The diagram shows the displacement, at a particular time T, of the standing wave that is set up in the pipe.

On the diagram, at time T, label with the letter C a point in the pipe that is at the centre of a compression.

[1]

4. Three identical light bulbs, X, Y and Z, each of resistance 4.0Ω are connected to a cell of emf 12 V. The cell has negligible internal resistance.

(a) The switch S is initially open. Calculate the total power dissipated in the circuit. [2]

(b) The switch is now closed.

(i) State, without calculation, why the current in the cell will increase. [1]

(ii)	Deduce the ratio	power dissipated in Y with S open power dissipated in Y with S closed	

5. A proton moves along a circular path in a region of a uniform magnetic field. The magnetic field is directed into the plane of the page.

(a) Label wit	h arrows	on the	diagram	the

(i)	magnetic force	F on	the	proton
1.1				PICCOIL

[1]

(ii) velocity vector v of the proton.

[1]

(b)	The speed of the proton is $2.16 \times 10^6 \mathrm{ms^{-1}}$ and the magnetic field strength is $0.042 \mathrm{T}$.
	For this proton, determine, in m, the radius of the circular path. Give your answer to ar
	appropriate number of significant figures.

[3]

***************************************	***************************************

[1]	(a) Identify particle X.
>	$X + H_1^s \leftarrow H_1^s + H_1^s$
ng reaction.	6. Deuterium, ² H, undergoes fusion according to the followin
M19/4/PHYSI/SP2/ENG/TZ2/XX	-01-

The following data are available for binding energies per nucleon.

	re of	eratu	temp	əyı 'e	blace	э ұзке	ove to	ou sp	 gp:	id (na)	st pe	าน นท	Sugges deuteri	(ii)
									8.0		20			
					• • • •									
* * * * *														

 $VeM87.S = H_1^{\epsilon}$

 $V \ni M \subseteq I \cup f = H_1^S$

(This question continues on the following page)

(q)

[1]

(Question 6 continued)

(c) Particle Y is produced in the collision of a proton with a K⁻ in the following reaction.

$$K^- + p^+ \rightarrow K^0 + K^+ + Y$$

The quark content of some of the particles involved are

$$K^- = \overline{u}s$$
 $K^0 = d\overline{s}$

Identify, for particle Y, the

(I)	C	nar	ge	•																										
									 									- 11	 	 		<u> </u>					 				
				٠.		 				٠	ė,			 																0 -0	

(ii)	strangeness.	[1]
		111

(a)	10	Sł	10	W	th	18	t	tł	16)	in	ite	eı	ns	S	ţ	y	r	а	ıC	lia	a	t	e	90	t	ł	b	У		th	16	9	(00	26	e	2	r	15	}	i	S	8	ık)	0	u	t	4	()()	V	۷	n)	2		,		_															
•	• •		•			• 1		•	•	•																																																																				
(b)		Ε×	pl	ai	n	V	/h	ıy	•	SC	n	n	е	C	of	t	h	is	3	r	a	L IC	ik	2		j.	0	r	7	į	s	r	Œ	et	u	ır	'n	16	=(t t	t	0		t	16	-	(C6	- -	 a	n:	s	f	r	01	Υ		th	16	 }	a	tı	n	 IC)5	3	p	h	e	r	_ e			•••		
•			•		·			٠		•	٠	•	٠	÷	٠	•	•	•	ń	•			•	•		• 0	•		•	•		٠		•	٠	٠	٠			-	•	•				•		9		•	C.	•	٠	•	•	٠	•	٠	٠		٠	9	5											•	•	•	*	
•	* 3		•						•		•				•		•																																																										•			•
•		• •			•			•							•			*	٠		•		•	•		•0	•						- 6	• (1)	•				•		•	•		Č.	•				•			•	¥1	•	*	**	٠	•	•		٠					•	*				• }	•	•	•				
		• •						•	•						• 6			*	٠		•		•	•		•0	•						- 6	• (1)					•			•											•								•												•	•	•	٠		
•									•						•			*	٠		•		•	•		•0	•						- 6	• (1)				1			•	•												•						,			3				*			200	•			•	•	٠	٠	

